

How Passive House helps with delivery of NZEBs

Speaker: Jessica Grove-Smith
Passive House Institute, Darmstadt, Germany

European Directive

2019: all public buildings 2021: all buildings

2010/31/EU

According to (article 2, section 1)

"This Directive promotes the improvement of the energy performance of buildings [...],

taking into account [:]

outdoor climatic and local conditions, as well as

indoor climate requirements and

<u>cost-effectiveness</u>."

2019: all public buildings

2021: all buildings

"Nearly zero-energy buildings" (NZEB)

with energy requirements at the "cost-optimal level"

Definition of "nearly zero-energy building": (article 2, section 2)

"... a building that has a very high energy performance, as determined in accordance with Annex I.

The nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced on-site or nearby"

Passivhaus = High Energy Performance

Heating demand:

 \leq 15 kWh/(m²a) or heating load \leq 10 W/m²

Primary energy demand:

 \leq 120 kWh/(m²a)

For further details see www.passivehouse.com

Passivhaus = High Energy Performance

Field projects prove that energy saving are reliably achieved ...

Passivhaus = High Energy Performance

... and that consumption remains low over time!

The remaining demand can easily be covered by on-site or nearby renewables

16 m² PV for each 80m²-apartment

Passivhaus + Renewables = Dream Team

The remaining demand can easily be covered by on-site or nearby renewables

Passive Houses
Hanover
Kronsberg (2000):
wind electricity

Soon: Introduction of the PH classes

Details in afternoon presentation:
Session 4
"standards & performance"

Energy efficiency and renewable energy generation – The Dream Team

Nearly zero-energy buildings" (NZEB)

with energy requirements at the "cost-optimal level"

Definition of "cost-optimal level": (article 2, section 14)

"... the energy performance level which leads to the lowest cost during the estimated **economic lifecycle**, where: (a) the lowest cost is determined taking into account

- energy-related investment costs,
- maintenance and operating costs (incl. energy costs and savings, [...])
- [...] and disposal costs, where applicable "

Passivhaus = Cost-optimum

Finding the balance between investment & energy saving costs

Passivhaus = Cost-optimum

Finding the balance between investment & energy saving costs

Anual energy demand (heating, cooling) of a cost-optimised building Source: "PH in different climate zones" Feist et. al. 2011, ressearch project supported by Deutsche Bundesstiftung Umwelt and Saint-Gobain

Passivhaus = Higher investment?

Cost difference between PH and low energy builing near zero

form factor

Source: Prof. Martin Treberspurg, DI Roman Smutny, DI Roman Grünner, (BOKU)

Passivhaus = Higher investment?

Effects of the learning curve & component availability

Nearly zero-energy buildings" (NZEB)

with energy requirements at the "cost-optimal level"

Passivhaus = NZEB !!

All the requirements are met. It's tried and tested.

NZEB = Passivhaus ??

Not necessarily ...

Definition of "nearly zero-energy building": (article 2, section 2)

"... a building that has a very high energy performance, as determined in accordance with Annex I. [...] "

(Annex 1)
"The energy performance [...]

What about the household electricity?

[...] shall reflect the heating energy needs and cooling energy needs [...] and domestic hot water needs."

What is part of the energy performance?

Definition of "nearly zero-energy building": (article 2, section 2)

"... a building that has a very high energy performance, as determined in accordance with Annex I. [...] "

(Annex 1)

"The energy performance [...]

[...] shall include an energy performance indicator and a numeric indicator of primary energy use [...]"

NZEB could also be a less energy efficient building "compensating" with renewable energy

Is primary energy a suitable indicator?

Primary energy as sustainabiliy criteria?

Energy supply over the course of a year

Energy supply over the course of a year

PE: Environmental impact / resources

A typical existing detached home

village of 100 houses aims primary energy alone is NOT supply; max 200 m³ fivable indicate energy alone is NOT.

The renarees are primary energy alone is NOT.

- er neronialinable energy sources

we us seminited resolver activities buildings, have to resort to able energy sources

The only way to achieve sustainable solutions is to use the <u>available resources</u> responsibly. Efficiency is the key!

Primary energy as sustainabiliy criteria?

PH sustainability criteria = **NEW!** PER, primary energy renewable

Details in afternoon presentation:
Session 4
"standards & performance"

- System efficiency / overall performance
- Environmental impact
- Seasonal energy storage

Overall sustainability criteria

NZEB = PE, primary energy

Passivhaus = NZEB !!

All the requirements are met. It's tried and tested.

NZEB = Passivhaus ??

Not necessarily ...

... but it CAN and it SHOULD be !!

Efficiency must come first

PH is the very foundation of NZEB!

Speaker: Jessica Grove-Smith
Passive House Institute, Darmstadt, Germany

